Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
EMBO J ; 41(2): e108713, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888888

RESUMO

Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.


Assuntos
/virologia , Vírus de Plantas/patogenicidade , Vacúolos/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Ligação Proteica , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/virologia , Proteínas do Complexo da Replicase Viral/química , Replicação Viral
2.
Sci Rep ; 11(1): 5025, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658544

RESUMO

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Genoma Viral , Vírus Gigantes/ultraestrutura , Vírion/ultraestrutura , Acanthamoeba/ultraestrutura , Biomassa , Vírus de DNA/genética , Vírus de DNA/crescimento & desenvolvimento , Vírus de DNA/isolamento & purificação , DNA Viral/biossíntese , Vírus Gigantes/genética , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/isolamento & purificação , Interações Hospedeiro-Patógeno/genética , Fagossomos/ultraestrutura , Fagossomos/virologia , Microbiologia do Solo , Termogravimetria , Vacúolos/ultraestrutura , Vacúolos/virologia , Vírion/genética , Vírion/crescimento & desenvolvimento , Replicação Viral , Microtomografia por Raio-X
3.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896597

RESUMO

TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.


Assuntos
Adenosina Trifosfatases/metabolismo , Nucleocapsídeo/metabolismo , Nucleopoliedrovírus/fisiologia , Replicação Viral , Animais , Núcleo Celular/virologia , Citoplasma/virologia , DNA Helicases/metabolismo , DNA Viral/biossíntese , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Células Sf9/virologia , Vacúolos/virologia , Proteínas Virais/metabolismo , Vírion
4.
Biomedica ; 38(0): 135-143, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184368

RESUMO

INTRODUCTION: Dengue virus replication has been considered mainly cytoplasmic, however, studies indicate that some flaviviruses may use the intranuclear pathway as part of the machinery that the virus uses to increase infection capacity in the host cell. This paper describes alterations at nuclear level in the cell infected with dengue, which are likely involved in the virus replication processes. OBJECTIVE: This paper addresses the ultrastructural observations of C6/36 cells of the Aedes albopictus mosquito infected with dengue virus type 2. MATERIALS AND METHODS: C6/36 cells were infected in culture medium with the serum of a patient positively diagnosed for dengue 2. Subsequently, the cells were incubated for 10 days and the cytopathic effect was assessed. The cells were processed for immunofluorescence assays and transmission electron microscopy. RESULTS: The immunofluorescence assays confirmed the presence of viral protein E associated with cellular syncytia in the culture. In the ultrastructural study, the infected cells showed vesicular-tubular structures and dilated cisterns of the endoplasmic reticulum at the cytoplasmic level. Viral particles were found exclusively in cytoplasm localized within the vacuoles. Nuclei of cellular syncytia showed membrane structures arranged in a circular shape and, in some cases, these syncytia displayed lysis; in no case viral particles were observed at the nuclear level. CONCLUSIONS: The ultrastructural alterations of nuclei in cells infected with the dengue virus using electron microscopy techniques had not been reported before, as far as we know. It is likely that such modifications are associated with replicative processes at an intranuclear level as an alternate replication mechanism.


Assuntos
Núcleo Celular/ultraestrutura , Efeito Citopatogênico Viral , Vírus da Dengue/fisiologia , Aedes/citologia , Animais , Linhagem Celular , Citoplasma/virologia , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Células Gigantes/virologia , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Vacúolos/virologia , Proteínas do Envelope Viral/análise , Viremia/virologia , Replicação Viral
5.
Biomédica (Bogotá) ; 38(supl.2): 135-143, ago. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1038798

RESUMO

ABSTRACT Introduction: Dengue virus replication has been considered mainly cytoplasmic, however, studies indicate that some flaviviruses may use the intranuclear pathway as part of the machinery that the virus uses to increase infection capacity in the host cell. This paper describes alterations at nuclear level in the cell infected with dengue, which are likely involved in the virus replication processes. Objective: This paper addresses the ultrastructural observations of C6/36 cells of the Aedes albopictus mosquito infected with dengue virus type 2. Materials and methods: C6/36 cells were infected in culture medium with the serum of a patient positively diagnosed for dengue 2. Subsequently, the cells were incubated for 10 days and the cytopathic effect was assessed. The cells were processed for immunofluorescence assays and transmission electron microscopy. Results: The immunofluorescence assays confirmed the presence of viral protein E associated with cellular syncytia in the culture. In the ultrastructural study, the infected cells showed vesicular-tubular structures and dilated cisterns of the endoplasmic reticulum at the cytoplasmic level. Viral particles were found exclusively in cytoplasm localized within the vacuoles. Nuclei of cellular syncytia showed membrane structures arranged in a circular shape and, in some cases, these syncytia displayed lysis; in no case viral particles were observed at the nuclear level. Conclusions: The ultrastructural alterations of nuclei in cells infected with the dengue virus using electron microscopy techniques had not been reported before, as far as we know. It is likely that such modifications are associated with replicative processes at an intranuclear level as an alternate replication mechanism.


RESUMEN Introducción. La replicación del virus del dengue se ha considerado principalmente citoplásmica; sin embargo, en diversos estudios se ha informado que algunos flavivirus pueden utilizar factores intranucleares como parte de la maquinaria que utilizan para aumentar la capacidad de infección en la célula huésped. En este trabajo se describen las alteraciones a nivel nuclear en células infectadas con dengue, probablemente involucradas en procesos de replicación viral. Objetivo. Presentar las observaciones ultraestructurales de células C6/36 de Aedes albopictus infectadas con el virus del dengue de tipo 2. Materiales y métodos. Se infectaron células C6/36 con suero de un paciente con diagnóstico de dengue 2; posteriormente, se mantuvieron en medio de cultivo durante 10 días y se evaluó el efecto citopático. Las células se procesaron para los ensayos de inmunofluorescencia y microscopía electrónica de transmisión, con el fin de hacer el estudio ultraestructural. Resultados. Los ensayos de inmunofluorescencia confirmaron la presencia de la proteína E viral asociada con sincitios celulares en el cultivo. En el estudio ultraestructural, las células infectadas tenían estructuras vesiculares y tubulares, y cisternas dilatadas del retículo endoplásmico en el citoplasma. Las partículas virales se encontraron exclusivamente en vacuolas localizadas en el citoplasma. Los núcleos de los sincitios celulares contenían estructuras de membrana dispuestas en forma circular y, en algunos casos, dichos sincitios presentaban lisis. En ningún caso se observaron partículas virales en el núcleo. Conclusiones. No se habían reportado alteraciones ultraestructurales en los núcleos de células infectadas con el virus del dengue detectadas mediante técnicas de microscopia electrónica. Es probable que tales modificaciones estén asociadas con procesos intranucleares de replicación como un mecanismo alternativo.


Assuntos
Animais , Humanos , Núcleo Celular/ultraestrutura , Efeito Citopatogênico Viral , Vírus da Dengue/fisiologia , Vacúolos/virologia , Viremia/virologia , Replicação Viral , Microscopia Eletrônica , Células Gigantes/virologia , Linhagem Celular , Proteínas do Envelope Viral/análise , Aedes/citologia , Citoplasma/virologia , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Microscopia de Fluorescência
6.
Int J Med Microbiol ; 308(1): 237-245, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29174633

RESUMO

Guanylate-binding proteins (GBP) are a family of dynamin-related large GTPases which are expressed in response to interferons and other pro-inflammatory cytokines. GBPs mediate a broad spectrum of innate immune functions against intracellular pathogens ranging from viruses to bacteria and protozoa. Several binding partners for individual GBPs have been identified and several different mechanisms of action have been proposed depending on the organisms, the cell type and the pathogen used. Many of these anti-pathogenic functions of GBPs involve the recruitment to and the subsequent destruction of pathogen containing vacuolar compartments, the assembly of large oligomeric innate immune complexes such as the inflammasome, or the induction of autophagy. Furthermore, GBPs often cooperate with immunity-related GTPases (IRGs), another family of dynamin-related GTPases, to exert their anti-pathogenic function, but since most IRGs have been lost in the evolution of higher primates, the anti-pathogenic function of human GBPs seems to be IRG-independent. GBPs and IRGs share biochemical and structural properties with the other members of the dynamin superfamily such as low nucleotide affinity and a high intrinsic GTPase activity which can be further enhanced by oligomerisation. Furthermore, GBPs and IRGs can interact with lipid membranes. In the case of three human and murine GBP isoforms this interaction is mediated by C-terminal isoprenylation. Based on cell biological studies, and in analogy to the function of other dynamins in membrane scission events, it has been postulated that both GBPs and IRGs might actively disrupt the outer membrane of pathogen-containing vacuole leading to the detection and destruction of the pathogen by the cytosolic innate immune system of the host. Recent evidence, however, indicates that GBPs might rather function by mediating membrane tethering events similar to the dynamin-related atlastin and mitofusin proteins, which mediate fusion of the ER and mitochondria, respectively. The aim of this review is to highlight the current knowledge on the function of GBPs in innate immunity and to combine it with the recent progress in the biochemical characterisation of this protein family.


Assuntos
Citoplasma/imunologia , Proteínas de Ligação ao GTP/fisiologia , Imunidade Inata , Animais , Autofagia/imunologia , Citoplasma/microbiologia , Citoplasma/parasitologia , Citoplasma/virologia , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interferons/imunologia , Interferons/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/parasitologia , Vacúolos/virologia
7.
Vet Pathol ; 55(2): 294-297, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29157191

RESUMO

Feline panleukopenia virus (FPV) infections are typically associated with anorexia, vomiting, diarrhea, neutropenia, and lymphopenia. In cases of late prenatal or early neonatal infections, cerebellar hypoplasia is reported in kittens. In addition, single cases of encephalitis are described. FPV replication was recently identified in neurons, although it is mainly found in cells with high mitotic activity. A female cat, 2 months old, was submitted to necropsy after it died with neurologic deficits. Besides typical FPV intestinal tract changes, multifocal, randomly distributed intracytoplasmic vacuoles within neurons of the thoracic spinal cord were found histologically. Next-generation sequencing identified FPV-specific sequences within the central nervous system. FPV antigen was detected within central nervous system cells, including the vacuolated neurons, via immunohistochemistry. In situ hybridization confirmed the presence of FPV DNA within the vacuolated neurons. Thus, FPV should be considered a cause for neuronal vacuolization in cats presenting with ataxia.


Assuntos
Vírus da Panleucopenia Felina , Panleucopenia Felina/patologia , Neurônios/patologia , Vacúolos/patologia , Animais , Proteínas do Capsídeo/genética , Gatos , Vírus da Panleucopenia Felina/genética , Feminino , Hibridização In Situ/veterinária , Neurônios/virologia , Filogenia , Medula Espinal/patologia , Medula Espinal/virologia , Vacúolos/virologia
8.
Open Biol ; 7(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29093211

RESUMO

Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy.


Assuntos
Citomegalovirus/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vírion/metabolismo , Montagem de Vírus , Células Cultivadas , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Fibroblastos/virologia , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/virologia , Liberação de Vírus
9.
Viruses ; 9(9)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872588

RESUMO

The porcine epidemic diarrhea virus (PEDV) is a coronavirus (CoV) belonging to the α-CoV genus and it causes high mortality in infected sucking piglets, resulting in substantial losses in the farming industry. CoV trigger a drastic reorganization of host cell membranes to promote their replication and egression, but a detailed description of the intracellular remodeling induced by PEDV is still missing. In this study, we examined qualitatively and quantitatively, using electron microscopy, the intracellular membrane reorganization induced by PEDV over the course of an infection. With our ultrastructural approach, we reveal that, as most of CoV, PEDV initially forms double-membrane vesicles (DMVs) and convoluted membranes (CMs), which probably serve as replication/transcription platforms. Interestingly, we also found that viral particles start to form almost simultaneously in both the endoplasmic reticulum and the large virion-containing vacuoles (LVCVs), which are compartments originating from the Golgi, confirming that α-CoV assemble indistinguishably in two different organelles of the secretory pathway. Moreover, PEDV virons appear to have an immature and a mature form, similar to another α-CoV the transmissible gastroenteritis coronavirus (TGEV). Altogether, our study underlies the similarities and differences between the lifecycle of α-CoV and that of viruses belonging to other CoV subfamilies.


Assuntos
Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Membranas Intracelulares/ultraestrutura , Vírus da Diarreia Epidêmica Suína/fisiologia , Animais , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Microscopia Eletrônica , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/ultraestrutura , Suínos , Vacúolos/ultraestrutura , Vacúolos/virologia , Células Vero
10.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974565

RESUMO

Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3+ autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions.IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.


Assuntos
Autofagia , Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/virologia , Vacúolos/virologia , Animais , Infecções por Birnaviridae/virologia , Linhagem Celular , Embrião de Galinha , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Transdução de Sinais , Vacúolos/fisiologia , Internalização do Vírus , Liberação de Vírus , Replicação Viral
11.
PLoS Pathog ; 12(11): e1005917, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27851824

RESUMO

Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.


Assuntos
Hepatócitos/virologia , Malária Falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Imunofluorescência , Humanos , Fígado , Malária Falciparum/virologia , Camundongos , Família Multigênica , Organismos Geneticamente Modificados , Filogenia , Plasmodium falciparum , Transporte Proteico , Vacúolos/virologia
12.
Trends Microbiol ; 24(7): 558-567, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27012511

RESUMO

In addition to CD4 T lymphocytes, HIV-1 infects tissue macrophages that can actively accumulate infectious virions in vacuolar subcellular structures mostly connected to the plasma membrane and recently termed virus-containing compartments (VCCs). The VCC-associated HIV-1 reservoir of infected macrophages can be either increased or depleted by immunologic and pharmacologic agents, at least in vitro, thus suggesting that these factors (or related molecules) could be effective in curtailing the macrophage-associated HIV-1 reservoir in infected individuals receiving combination antiretroviral therapy (cART). Here we review evidence on the pathogenic role of tissue macrophages as long-term viral reservoirs in vivo and upon in vitro infection with a particular emphasis on the immuno-pharmacological modulation of VCCs.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Macrófagos/virologia , Vacúolos/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Macrófagos/imunologia
13.
Rev. iberoam. micol ; 33(1): 26-33, ene.-mar. 2016. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-149371

RESUMO

Background. The Saccharomyces cerevisiae vacuole is actively involved in the mechanism of autophagy and is important in homeostasis, degradation, turnover, detoxification and protection under stressful conditions. In contrast, vacuolar proteases have not been fully studied in phylogenetically related Candida glabrata. Aims. The present paper is the first report on proteolytic activity in the C. glabrata vacuole. Methods. Biochemical studies in C. glabrata have highlighted the presence of different kinds of intracellular proteolytic activity: acid aspartyl proteinase (PrA) acts on substrates such as albumin and denatured acid hemoglobin, neutral serine protease (PrB) on collagen-type hide powder azure, and serine carboxypeptidase (CpY) on N-benzoyl-tyr-pNA. Results. Our results showed a subcellular fraction with highly specific enzymatic activity for these three proteases, which allowed to confirm its vacuolar location. Expression analyses were performed in the genes CgPEP4 (CgAPR1), CgPRB1 and CgCPY1 (CgPRC), coding for vacuolar aspartic protease A, neutral protease B and carboxypeptidase Y, respectively. The results show a differential regulation of protease expression depending on the nitrogen source. Conclusions. The proteases encoded by genes CgPEP4, CgPRB1 and CgCPY1 from C. glabrata could participate in the process of autophagy and survival of this opportunistic pathogen (AU)


Antecedentes. La vacuola de Saccharomyces cerevisiae está involucrada activamente en el mecanismo de autofagia, desarrollando una labor importante en la homeostasis, degradación, recambio proteico, desintoxicación y protección de la célula en condiciones de estrés. Por el contrario, las proteasas vacuolares de Candida glabrata aún no han sido estudiadas por completo. Objetivos. El presente trabajo describe por primera vez la actividad proteolítica vacuolar en C. glabrata. Métodos. Los estudios bioquímicos realizados en C. glabrata pusieron de manifiesto la presencia de diferentes actividades proteolíticas: aspartil proteinasa ácida, que actúa sobre sustratos como la albúmina y la hemoglobina ácida desnaturalizada; serín proteasa neutra, con actividad sobre el substrato de tipo colágeno hide powder azure, y serín carboxipeptidasa, que actúa sobre N-benzoil-tyr-pNa. Resultados. La obtención de una fracción subcelular mostró una elevada actividad enzimática específica de las tres proteasas, lo que permitió confirmar su localización vacuolar. Se realizaron análisis de la expresión de los genes CgPEP4 (CgAPR1), CgPRB1 y CgCPY1 (CgPRC1), codificantes de las actividades proteolíticas aspartil proteasa A, proteasa neutra B y carboxipeptidasa Y, respectivamente. Los resultados reflejan una regulación diferencial de la expresión de la proteasa, dependiendo de la fuente de nitrógeno. Conclusiones. Las proteasas codificadas por los genes CgPEP4, CgPRB1 y CgCPY1 podrían participar en el proceso de autofagia y supervivencia de este patógeno oportunista (AU)


Assuntos
Peptídeo Hidrolases/análise , Candida glabrata , Candida glabrata/isolamento & purificação , Candida glabrata/patogenicidade , Carboxipeptidases/análise , Carboxipeptidases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/patogenicidade , Vacúolos/virologia , Candida glabrata/enzimologia , Ácido Aspártico Proteases/análise , Ácido Aspártico Proteases/isolamento & purificação , Autofagia , Homeostase , Benzoilarginina Nitroanilida/análise , Infecções Oportunistas/microbiologia , Vacúolos , Vacúolos/microbiologia , Vacúolos/patologia
14.
J Virol ; 89(24): 12441-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423955

RESUMO

UNLABELLED: Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE: Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The ultrastructure of turnip mosaic virus (TuMV)-induced membrane remodeling was investigated over several days of infection. The first change that was observed involved endoplasmic reticulum-connected convoluted membrane accumulation. This was followed by the formation of single-membrane tubules, which were shown to be viral RNA replication sites. Later in the infection process, double-membrane tubular structures were observed and were associated with viral particle bundles. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. This work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation.


Assuntos
Retículo Endoplasmático , Membranas Intracelulares , Tymovirus , Vacúolos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , /metabolismo , Tymovirus/genética , Tymovirus/metabolismo , Tymovirus/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vacúolos/virologia
15.
Autophagy ; 10(7): 1167-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813622

RESUMO

Recent in vitro studies have suggested that autophagy may play a role in both HIV-1 replication and disease progression. In this study we investigated whether autophagy protects the small proportion of HIV-1 infected individuals who remain clinically stable for years in the absence of antiretroviral therapy, these named long-term nonprogressors (LTNP) and elite controllers (EC). We found that peripheral blood mononuclear cells (PBMC) of the HIV-1 controllers present a significantly higher amount of autophagic vesicles associated with an increased expression of autophagic markers with respect to normal progressors. Of note, ex vivo treatment of PBMC from the HIV-1 controllers with the MTOR inhibitor rapamycin results in a more efficient autophagic response, leading to a reduced viral production. These data lead us to propose that autophagy contributes to limiting viral pathogenesis in HIV-1 controllers by targeting viral components for degradation.


Assuntos
Autofagia , Infecções por HIV/patologia , Infecções por HIV/virologia , Sobreviventes de Longo Prazo ao HIV , Compartimento Celular , HIV-1 , Humanos , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/ultraestrutura , Linfonodos/patologia , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vacúolos/virologia
16.
J Gen Virol ; 92(Pt 12): 2838-2848, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21880841

RESUMO

We have previously demonstrated that an intact PSAP motif in the ORF3 protein is required for the formation and release of membrane-associated hepatitis E virus (HEV) particles with ORF3 proteins on their surface. In this study, we investigated the direct interaction between the ORF3 protein and tumour susceptibility gene 101 (Tsg101), a cellular factor involved in the budding of viruses containing the P(T/S)AP late-domain, in PLC/PRF/5 cells expressing the wild-type or PSAP-mutated ORF3 protein and Tsg101 by co-immunoprecipitation. Tsg101 bound to wild-type ORF3 protein, but not to the PSAP-inactive ORF3 protein. To examine whether HEV utilizes the multivesicular body (MVB) pathway to release the virus particles, we analysed the efficiency of virion release from cells upon introduction of small interfering RNA (siRNA) against Tsg101 or dominant-negative (DN) mutants of Vps4 (Vps4A and Vps4B). The relative levels of virus particles released from cells depleted of Tsg101 decreased to 6.4 % of those transfected with negative control siRNA. Similarly, virion egress was significantly reduced by the overexpression of DN forms (Vps4AEQ or Vps4BEQ). The relative levels of virus particles released from cells expressing Vps4AEQ and Vps4BEQ were 19.2 and 15.6 %, respectively, while the overexpression of wild-type Vps4A and Vps4B did not alter the levels of virus release. These results indicate that the ORF3 protein interacts with Tsg101 through the PSAP motifs in infected cells, and that Tsg101 and the enzymic activities of Vps4A and Vps4B are involved in HEV release, thus suggesting that HEV requires the MVB pathway for egress of virus particles.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Hepatite E/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , ATPases Associadas a Diversas Atividades Celulares , Western Blotting , Células Cultivadas , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vírus da Hepatite E/genética , Humanos , Imunoprecipitação , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo , Vacúolos/virologia , Proteínas Virais/genética , Vírion/genética , Vírion/fisiologia
17.
J Electron Microsc (Tokyo) ; 60(4): 275-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21593079

RESUMO

Feline coronavirus (FCoV) consists of two biotypes based on their growth in cell culture and their antigenicity. Infections with FCoV are highly prevalent in the cat population worldwide. In this study, Felis catus whole fetus (Fcwf-4)cell culture was infected with FCoV UPM11C/08. Virus multiplication in cell culture was monitored and examined under the transmission electron microscope. The virus particles revealed the characteristic morphology of feline FCoV represented by envelope viruses surrounded by peplomers. Virus attachment and entry into the cell occurred 15 h post-infection (pi), and the myriad of virus particles were observed both extracellularly and intracellularly after 48 h pi. Thereafter, intracellular virus particles were observed to be present in vacuoles or present freely in the cytoplasm.


Assuntos
Coronavirus Felino/patogenicidade , Citoplasma/ultraestrutura , Vacúolos/ultraestrutura , Animais , Gatos , Linhagem Celular , Células Cultivadas/ultraestrutura , Células Cultivadas/virologia , Coronavirus Felino/isolamento & purificação , Coronavirus Felino/ultraestrutura , Citoplasma/virologia , Peritonite Infecciosa Felina/virologia , Microscopia Eletrônica de Transmissão , Vacúolos/virologia
18.
New Phytol ; 191(3): 746-762, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477206

RESUMO

• In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. • To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. • Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. • These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.


Assuntos
Cucumovirus/fisiologia , Proteínas de Ligação a DNA/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , RNA Viral/biossíntese , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Cucumovirus/genética , Cucumovirus/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , Protoplastos , Interferência de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão , /virologia , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/metabolismo , Vacúolos/virologia , Proteínas Virais/genética , Replicação Viral/fisiologia , Dedos de Zinco/genética , beta-Galactosidase
19.
Virology ; 405(2): 579-91, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20655079

RESUMO

Viral factories are complex structures in the infected cell where viruses compartmentalize their life cycle. Rubella virus (RUBV) assembles factories by recruitment of rough endoplasmic reticulum (RER), mitochondria and Golgi around modified lysosomes known as cytopathic vacuoles or CPVs. These organelles contain active replication complexes that transfer replicated RNA to assembly sites in Golgi membranes. We have studied the structure of RUBV factory in three dimensions by electron tomography and freeze-fracture. CPVs contain stacked membranes, rigid sheets, small vesicles and large vacuoles. These membranes are interconnected and in communication with the endocytic pathway since they incorporate endocytosed BSA-gold. RER and CPVs are coupled through protein bridges and closely apposed membranes. Golgi vesicles attach to the CPVs but no tight contacts with mitochondria were detected. Immunogold labelling confirmed that the mitochondrial protein p32 is an abundant component around and inside CPVs where it could play important roles in factory activities.


Assuntos
Imageamento Tridimensional/métodos , Organelas , Vírus da Rubéola/metabolismo , Vacúolos , Montagem de Vírus , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Técnica de Fratura por Congelamento , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Complexo de Golgi/virologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Organelas/metabolismo , Organelas/ultraestrutura , Organelas/virologia , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vacúolos/virologia
20.
Avian Pathol ; 39(3): 223-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20544429

RESUMO

Proliferative growth, consistent with poxvirus infection, encapsulated plastic beak-bits and covered the dorsal portion of the upper beak and nares of adult male and female captive-raised Hungarian partridges. Three representative birds were submitted to the Wisconsin Veterinary Diagnostic Laboratory for necropsy. Lesions in the necropsied birds extended through the nares, where the plastic bit ends are designed to rest. The lesions also variably extended caudally into the oropharynx and cranially within the beak epithelium, and included palate deformity and beak necrosis. Poxvirus was diagnosed in all of the birds examined based on histopathology, electron microscopy, and polymerase chain reaction amplification and sequencing. This report is the first to describe avian pox lesions associated with the application of beak-bits and the resulting beak and oral pathology.


Assuntos
Avipoxvirus/patogenicidade , Bico/virologia , Doenças das Aves/virologia , Galliformes/virologia , Infecções por Poxviridae/veterinária , Animais , Autopsia/veterinária , Bico/patologia , Doenças das Aves/patologia , Primers do DNA , Feminino , Hungria , Hiperplasia/patologia , Hiperplasia/veterinária , Hiperplasia/virologia , Masculino , Necrose , Reação em Cadeia da Polimerase , Infecções por Poxviridae/patologia , Vacúolos/patologia , Vacúolos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...